
ANNUAL JOURNAL OF ELECTRONICS, 2009, ISSN 1313-1842

56

Using HDL Translators in VLSI Design Laboratory
Exercises

Atanas Nikolov Kostadinov

Abstract – There exist many different hardware description

languages (HDLs). The most popular of them are VHDL,
Verilog and SystemC. The most engineers have more
experience in one of them. The using of a HDL translator can
be presented in VLSI design laboratory exercises. At least one
lecture about HDL translators and about explanation of some
keywords in another (received after translation) hardware
description language is a topic suitable to be included in VLSI
design discipline.

Keywords – HDL translators, VLSI design, Laboratory
exercises

I. INTRODUCTION

 There exist many different HDLs (Hardware description
languages) as VHDL (Very High Speed Integrated Circuit
Description Language), Verilog, SystemC, ABEL
(Advanced Boolean Expression Language), AHDL (Altera
HDL), Handel-C, Lola, etc [1]. The most popular of them
are VHDL, Verilog and SystemC.
 Usually, in the VLSI (Very-large-scale integration)
design subject one HDL has been presented by the lecturer.
In Technical University – Sofia, Plovdiv branch VHDL is
used. In he VLSI design an important issue is to be used
various IPs (Intellectual Properties) modules [2, 3, 4]. If
there exist HDL IP in a language which designer is not
proficient enough then the HDL translator can be used.
Other advantages of using above-mentioned translators are
given on the next lines [5, 6].
 - Double your market share by supporting both VHDL
and Verilog languages. Instead of investing weeks of
non-recurring engineering time to develop designs or
models in the second language, use v2v translators to do it
for you in a fraction of the time;
 - Save time in maintenance by keeping designs in one
language and translating changes into the other;
 - Learn language translation shortcuts and tips as
information warnings guide the user. Sometimes a very
minor change to the source will make the translation go
much smoother. V2V translators exploit commonality
between the two languages;
 - Decrease language learning time as translators acquaint
designers with both Verilog and VHDL. Most engineers
have more experience in one of the languages. Using the
translation tools builds on what you already know and
teaches you as you need to learn. Any new language
appears difficult at the start. The translation tools make
learning much easier;
 - Make conversions easy and consistent. Single point of
control is the key to successful change procedures;

 - Converting several thousand lines of VHDL code into
Verilog by hand can take hundreds of engineering
man-hours. HDL translator can do the job in a matter of
minutes significantly reducing workload, engineering costs,
and time. The cost of the program can be recovered after its
single run;
 - In a complex code comments are crucial to the
continuing maintenance of the design. HDL translators
usually preserve comments and formatting of the original
source code;
 - A translator that could translate all possible language
constructs would be cumbersome and costly. The part of
source code it cannot translate (usually very small or none)
will be commented out, for subsequent manual translation;
 - The HDL translators are simple to use;

II. USING HDL TRANSLATORS IN VLSI DESIGN
LABORATORY EXERCISES

 There are realized many different HDL translators [5, 6,
7, 8, 9]. In this paper X-HDL is used in demo mode and
with an evaluation license. The demo mode is fully
functional but restricts the source file size to 1kB [9] which
is suitable for educational purposes.
 In VLSI design laboratory exercises X-HDL can be used
to translate the designed by students combinational and
sequential hardware components according VLSI design
laboratory exercises guide [10].

A. Using X-HDL in translation of combinational hardware
components

 As an example, the VHDL code which will be translated
is describing a multiplexer (MUX). This MUX consists of
four 3-bit inputs called I0, I1, I2, and I3, 2-bit selection
signal S and 3-bit output signal named O. The code before
translation is shown on the next lines.

library ieee;
use ieee.std_logic_1164.all;

entity Mux is
port(I3: in std_logic_vector (2 downto 0);
I2: in std_logic_vector (2 downto 0);
I1: in std_logic_vector (2 downto 0);
I0: in std_logic_vector (2 downto 0);
S: in std_logic_vector (1 downto 0);
O: out std_logic_vector (2 downto 0));
end Mux;

architecture beh of Mux is
begin
process(I3,I2,I1,I0,S)
begin

A. Kostadinov is with the Department of Computer Systems
and Technologies, Technical University - Sofia, Plovdiv
branch, 25 Tsanko Diustabanov Str., 4000 Plovdiv, Bulgaria,
e-mail: kostadat@tu-plovdiv.bg

ANNUAL JOURNAL OF ELECTRONICS, 2009

57

case S is
when "00" => O <= I0;
when "01" => O <= I1;
when "10" => O <= I2;
when "11" => O <= I3;
when others => O <= "ZZZ";

end case;
end process;
end beh;

 The received Verilog code after translation with a small
manual correction is shown on the lines bellow.

`timescale 1 ns / 1 ns

module Mux (I3, I2, I1, I0, S, O);
input [2:0] I3;
input [2:0] I2;
input [2:0] I1;
input [2:0] I0;
input [1:0] S;
output [2:0] O;
reg [2:0] O;

always @ (I3 or I2 or I1 or I0 or S)
case (S)
2'b00 : O <= I0;
2'b01 : O <= I1;
2'b10 : O <= I2;
2'b11 : O <= I3;
default : O <= 3'bZZZ;

endcase
endmodule

 The received Verilog code is simulated in order to be
checked the correct work of this module. It is used
ModelSim Altera Starter Edition [11]. The obtained results
showing the correct work of the translated module are
presented in Fig. 1.

FIG. 1. MUX SIMULATION RESULTS

B. Using X-HDL in translation of sequential hardware
components

 In the next example is used VHDL code of a counter.
This 8-bit counter has clock input CLK, reset signal RST
and 8-bit output signal named Q. The initial VHDL code
is presented on the next lines.

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity counter is
port (CLK: in std_logic ;
RST: in std_logic;
Q: out std_logic_vector (7 downto 0));
end counter;

architecture beh of counter is
signal countL : std_logic_vector (7 downto 0);
begin
process (CLK, RST)
begin
if RST ='1'
then countL <= "00000000";
elsif (CLK'event and CLK ='1')
then countL <= countL + 1;

end if;
end process ;
Q <= countL;
end beh ;

 The translated Verilog code with a small correction
manual correction is given on the lines bellow.

`timescale 1 ns / 1 ns

module counter (CLK, RST, Q);
input CLK;
input RST;
output [7:0] Q;
reg [7:0] countL;

always @ (posedge CLK)
if (RST == 1'b1)
countL <= 8'b00000000;
else countL <= countL + 1;
assign Q = countL;

endmodule

 A part of simulation results of the obtained Verilog
description of the counter is presented in Fig. 2.

FIG.2. COUNTER SIMULATION RESULTS

ANNUAL JOURNAL OF ELECTRONICS, 2009

58

C. Using X-HDL in translation of structural described
hardware

 In VLSI design, the structural descriptions are applied
when we have circuits based on different hardware
components. A simple example is presented in Fig. 3. This
circuit has been realized using EAGLE Layout Editor [12].

FIG.3. EXAMPLE CIRCUIT

 In this example the circuit consists of two components: a
2-input NAND gate and 2-input XOR gate. The truth table
is introduced in Table 1.

TABLE 1. TRUTH TABLE

in3 in2 in0 out1
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

 The circuit is described by VHDL using structural type
of description. The X-HDL translator is used and Verilog
description is received. After a small manual correction the
Verilog source files are simulated. The received results
after simulation are presented in Fig. 4.

FIG. 4. RESULTS AFTER SIMULATION

 We can see that results from truth table and received
after simulation are exactly the same. In this way, we can
conclude that the translation from VHDL to Verilog is
done correctly.

III. USING HDL TRANSLATORS IN VLSI DESIGN

RESEARCH AND DEVELOPMENT

 Usually, for the research and development is used bigger
than 1kB HDL design files. To translate them from VHDL
to Verilog using X-HDL software tool is required a license.
It is possible to be requested a 10-day evaluation license to

X-Tek Corporation in order to cope with the larger source
files.
 During the period of my ERCIM (European Research
Consortium for Informatics and Mathematics) fellowship a
predicate logic processor has been synthesized [13]. This is
an ASIP (Application-Specific Instruction-Set Processor)
type of processor. The simplified block diagram of the
designed architecture is shown in Fig. 5.

 FIG. 5. PLP SIMPLIFIED BLOCK DIAGRAM

 In Fig. 5, the abbreviation IR stands for Instruction
Register, PC – Program Counter, ACCA – Accumulator
named A, PLU – Predicate Logical Unit.
 Then the modification called PBOP processor has been
proposed and designed [14]. This processor architecture is
oriented to work with binary numbers in predicate logic. It
has been implemented the search and sorting algorithms.
The PBOP VHDL design files have been translated in
Verilog. Then Quartus ® II project has been realized. After
successful compilation, the FPGA (Field Programmable
Gate Array) part of the DE2 (Development and
Education 2) board [11] has been configured.
 As the latest design step, the PBOP processor has been
verified using SignalTap® II embedded logic analyzer
which is included in Quartus ® II software tool. A part of
the registered signals is presented in Fig. 6. The proposed
processor is clocked with a frequency of 50 MHz (PIN_N2
of the DE2 board is connected to cpu_clk) during the
verification process. The data are captured using the clock
signal as an acquisition signal and the reset signal as a
trigger signal. The obtained information is the same as
information when is used VHDL design files. This shows
again that the translation from VHDL to Verilog is correct.
 The signals presented in Fig. 6 are address (RAM
address bus), data_in and data_out (RAM data bus), Mre
and Mwe (Signals required for the realizing of the reading
and writing to the RAM), OPCODE (Code of the proposed
and implemented instructions), ICout (Content of Index
Counter), EQUAL, GRATER, LESS (Used flags), PCout
(Content of Program Counter), and Q (a binary value
loaded to accumulator named A).

Control
logic and

State
register

IR PC

Control Unit

Program
memory

ACCA

PLU

Datapath

Data
memory

ANNUAL JOURNAL OF ELECTRONICS, 2009

59

FIG. 6. SIGNALTAP II RESULTS

IV. CONCLUSIONS

 The HDL translators are very useful in VLSI design both
in the higher education as well as in the research and
development.
 The software tool translated from VHDL to Verilog and
back especially the used in this paper X-HDL has done the
translation in a correct way. There are parts of the produced
code where are required small manual corrections.
 This VLSI design laboratory exercise should be
preceded by a lecture about HDL translators and about
explanation of some keywords in another (received after
translation) hardware description language.

REFERENCES

[1] http://en.wikipedia.org/wiki/Hardware_description_language
[2] A. Kostadinov. Embedded System Design Based on IP
(Intellectual Property) Blocks, Proceedings of The National
Conference ELECTRONIKA’2006, pp. 150-155, 2006.
[3] J. Pimentel, L. Hoang. A VHDL Library of IP Cores for Power
Drive and Motion Control Applications, Proceedings of Canadian
Conference on Electrical and Computer Engineering, Vol. 1,
pp. 184-188, 2000.
[4] http://www.opencores.org/
[5] http://www.veritools-usa.com/vhdl2verilog.shtml
[6] http://www.trilent.net/products/vhdl2v/index.html
[7] http://www.ocean-logic.com/
[8] http://www.syncad.com/verilog_vhdl_translator.htm
[9] http://www.x-tekcorp.com/xhdl.php
[10] A. Kostadinov, D. Manova. VLSI design laboratory exercises
guide, TU-Sofia, Plovdiv branch, Plovdiv, 2005 (in Bulgarian).
[11] http://www.altera.com/
[12] http://www.cadsoftusa.com/
[13] A. Kostadinov, G. Kouzaev. Predicate Logic Processor of
Spatially Patterned Signals. Proceedings of The First WSEAS Int.
Conference on Multivariate Analysis and its Application in
Science and Engineering, pp. 94-96, 2008.
[14] A.Kostadinov, G. Kouzaev. Predicate and Binary
Operations Processor, Proceedings of The Eighth WSEAS Int.
Conference on Application of Electrical Engineering,
pp. 199-204, 2009.

